JA-64 Linux Kernel Internals

David Mosberger
Hewlett-Packard

Don Dugger
VA Linux Systems

Agenda

e Trillian Project Overview
A-64 Linux Kernel Technical Detalils
A-32 Support

A-64 Linux Demos

e Summary

e Question and Answer Session

The Trillian Project

e Goals
— Single IA-64 Linux port
— Optimized for IA-64

— Open source availability at or before Itanium ™
processor launch

— Source code released on 2/2/00 at www.kernel.org

e Co-operative effort to deliver the best code
— Similar to classic Linux model

— Many players contributing technology and
resources

— Caldera, CERN, HP, IBM, Intel, Red Hat, SGI, SuSE,
TurboLinux, and VA Linux Systems

Visit for more detalls

The Team — Founding
Members

Company Tasks
HP kernel, initial gcc, gas, Ild, emacs

IBM performance tools, measurement, and
analysis

Intel kernel, IA-32, platform, apache,EFI, FPSWA,
SCSI, SMP, libm

Red Hat (Cygnus) | GNUPro Toolkit (gcc, g++, gdb)
SGI compiler, kdb, OpenGL

VA Linux Systems |kernel, platform, E, E-Term, XFree86, cmds &
libs, bootloader, SMP, I1A-32

The Team — Contributing
Members

Company

Caldera |distribution

CERN glibc

Red Hat |[Commands, GNOME, distribution
SUSE KDE, distribution

TurboLinux | performance counters, distribution

Design Goals & Approach

e Pure 64-bit kernel for IA-64 (no legacy)

e APIs compatible with Linux/x86 wherever
possible (e.q., error-, signal-, ioctl-codes)

e Minimize changes to platform-independent
code (started with 2.1.126, now at 2.3.35)

e Optimize for 64-bit performance

e Follow standards whenever possible: |A-64
SW conventions, EFI, DIG, UNIX ABI, etc.

[] This presentation

Kernel Overview

[] Other IDF presentations

X11 Window

Application 1 Application 2 System

System calls

Device Network : |A-32
drivers protocols File systems subsystem

Virtual
Memory (VM)
subsystem

Signal Process
subsystem subsystem

Interrupt

subsystem Trap handling

Interrupt Vector Table (IVT)

Global Kernel Properties
e Data model: LP64

Type Size Alignment Type Size Alignment
char 1 float 4 4
short double 8 8

2
int 4 long double 10

long int 8

long longint 8 void * 8 8

with current gec: size=8, align=8

e Byte order:
— little-endian is native byte order
— big-endian processes are possible

Kernel Register Usage

e Follows SW Conventions standard except:
—110-f15 and f32-f127 are not available in kernel

— Note: other fp regs are available in kernel-mode
— needed for integer multiply (uses fp regs)
— good for certain ops, e.g., “find highest bit set”
— considering a change to only provide f6-f11 to the

compiler for integer multiply and divide

e Current kernel register usage:

r13: current task pointer (“thread pointer”
ar.kO: legacy I/O base addr (as per PRM)
ar.k5: fph owner
ar.k6: phys addr of current task
ar.k7: phys addr of page table

— planned changes: use bank 0O registers instead

Process Subsystem

e Kernel task structure:

/

kernel memory

stack

\
A

kernel backing store

2""PAGE_SIZE
(32KB currently)

for stacked regs

struct task_struct

Process State

e struct pt_regs.
—allocated on kernel mem stack on kernel entry
—contains “scratch” registers (=400 bytes)

e struct task struct:

—allocated on kernel mem stack when blocking
execution (context switch)

—contains “preserved” registers (=560 bytes)

e struct thread_struct:

—arch. specific part of struct task_struct
—contains ksp, lazy state: fph, ibrs, dbrs, ...

Example of Blocked Process

[] user state

[] kernel state
<— base of kernel memory stack

struct pt_regs {

stack frame of sys read() {

stack frame of block_read(){ direction of
stack growth

stack frame of schedule() {

struct switch_stack |

<— top of kernel memory stack

Lazily Managed State

e floating-point high partition (f32-f127):
— UP:
— disable access to when process blocks
— re-enable access when process resumes
— take fault & switch context If used another process
— MP:
— always save when process blocks
— alternative: use IPI to fetch state from another CPU

e debug & performance monitor registers:
—context-switch only if in use

Kernel Entry & EXit

Gtr, fault, or syscaD

switch to kernel

stack & rbs

A

alloc & save pt_regs

}

invoke C handler

soft interrupts?

v

handle soft interrupt

signals pending?

schedule()

v

deliver signals

restore pt_regs

Syscall Invocation

e Currently:
—Via break Iinstruction; e.g., stub for open():

nov r 15=1028
break.i 0x100000
cnp.eq p6=-1,r10
(p6) br.cond.spnt _ syscall error
br.ret.sptk. many b0

e Future:
—use “epc” Instruction to optimize syscall path

—syscall will look like function call into the gate
page (kernel mapped execute & promote page)

Syscall Argument Passing

e Naively: pass args on memory stack

—Slow:
— different from normal SW Conventions
— need to copy-in args (may fault)

e Better: pass args Iin stacked registers

—syscall path must be careful to preserve args
across rbs switches on kernel entry & exit
— avold “flushrs” like the pestilence
—to enable efficient syscall restart, syscall
handlers may not modify input args
— Indicated by “syscall_linkage” function attribute

VM Subsystem

® page size:
—kernel configurable to 4, 8, 16, or 64KB
— use getpagesize() to get page size in app
(DON'T hardcode any particular value)
—why a choice of page size?
— 4KB allows perfect Linux/x86 emulation
— >4KB:
— allows for good Linux/x86 emulation (netscape etc.)
— better for native |A-64 binaries (8 or 16KB best)

— bigger implemented virtual address space:
» 2X page size increases implemented VA by 16x

—remaining discussion: assume 8KB page size

Virtual Address Space

e 8 regions of 61 bits each (2,048 PB)

— provides headroom for future growth &
different mapping properties

B kernel space
[] user space

16,384 petabytes
(1PB=1,024TB)

region 4
region 3
region 2
region 1

region O

Current usage:

Page size:

Scope:

Mapping:

cached

large (256MB)

global

identity

uncached

large (256MB)

global

identity

vmalloc

kconfig (8KB)

global

page-table

stack segment

kconfig (8KB)

process

page-table

data segment

kconfig (8KB)

process

page-table

text segment

kconfig (8KB)

process

page-table

shared memory

kconfig (8KB)

process

page-table

IA-32 emulation

kconfig (8KB)

process

page-table

User Regions

e mapped by single 3-level page table
e each region gets 1/8th of level 1 page table

virtual address = sign extension of bit 39
21 7 10 10

40|39-33(32-23

page frame

__ | dword
L3 PT (pte) T

PTE

L2 PT (pmd)

L1 PT (pgd)

L2 paddr ~—*t—>

L3 paddr

Mapped Kernel Region

e has its own 3-level page table
e full 43-bit address space (w/8KB page size)

virtual address = sign extension of bit 42
18 10 10 10

43|42-33(32-23

page frame

dword

L2 PT (pmd)

L3 PT (pte) LT

=

L1 PT (pgd)

L2 paddr ~—*t—>

L3 paddr

—]

| SWAPPER_PG_ADDR

Planned Changes

e Change 3-level PT to 4-level PT
— 43 bits per region (with 8KB pages)
—top-level is indexed by region number

—allow different PT sharing on per-region basis:
— global (like current region 5)
— global w/copy-on-modify (for shared libraries)
— shared (for multi-threading)
— private (normal UNIX semantics)

e On other platforms, top-level is a no-op

Anatomy of a User Region

e Within each region, bits 40-59 must be sign-
extension of bit 39:

OX1fFFfffffefffefs
1239bytes
Ox1f f f f f 8000000000

unimplemented

address space

(access causes
SIGSEGV)

0x0000007fffffffff

1239 bytes

0x0000000000000000

Virtual Hash Page Table
(VHPT)

e HW assist to speed up TLB lookup

e Can operate in two modes:

—|long mode (hash table mode):
— on TLB miss, lookup hash table; if hit, install PTE

—short mode (virtually mapped linear page table)
— L3 page table pages linearly mapped into virtual space

— on TLB miss, access PTE through virtually mapped
page table; if no fault, install PTE

VVHPT Tradeoftfs

e Long mode (hash table mode)
— 32 bytes/entry
—more flexible (e.g., page size can vary per PTE)
—good for extremely sparse access patterns
—duplicates information in the page tables

e Short mode (virtually mapped linear PT)

— 8 bytes/entry (same memory as PTs)
—less flexible, but almost perfect fit for Linux

—great for reasonably dense access patterns
(e.g, LPT PTE maps 8MB of physical memory)

—needs up to 2x the TLB entries as long mode

Anatomy with VMLPT

0)

MPL_VA MSB=

R

>

OXLfffffffffeffefff

I 239 bytes

Ox1fffff8000000000

virtually mapped
linear page table

(no user access)

Ox1ff cOO003fffffff
240-13+3=230 pytag

Ox1f f cO00000000000

Note: With 64KB pages,
IMPL_VA_ MSB must be
bigger than 50 to avoid

overlap with user space.

Ox0000007fffffffff

I 239 bytes
0x0000000000000000

Anatomy of Kernel Region 5

=)
i
(a8
(0))]
o =
s |
N | <
>|
|
(ol
=
Yy

>

currently unused

OXbfffffffffffffff

Oxbf f f f cOO00000000

virtually mapped
linear page table

(no user access)

Oxbf f cOO003fffffff
243-13+3=230 pyteg

Oxbf f cO00000000000

vmalloc’d pages

gate page (exec & promo)

guard page (no access)

Oxa00003f fffffffff

0xa000000000004000
0xa000000000002000

0xa000000000000000

Signal Subsystem

e Normal Linux way of delivering a signal:
—save machine state (pt_regs & switch_stack)
— build signal frame on user stack

—dynamically generate code to call signal handler
In the signal frame

—change pt_regs to make return address point to
dynamically generated trampoline code

—return from kernel to user mode

Signhal Subsystem (cont.)

e Several issues with this approach:
—lots of machine state to save
—saving entire machine state requires flushrs
—generating code on the fly requires icache flush

—rbs cannot easily be switched in kernel because
some user register may be on kernel rbs

Signhal Subsystem (cont.)

e Solution:

—save only scratch state (unless PF_ PTRACED)

— If signal handler wants to access preserved state,
use unwind library to find correct location

—avolds flushrs, unless sigaltstack()
— use static trampoline in gate page

—code to switch rbs (if necessary) is in static
trampoline, which Is executed in user-mode

e Result:

—signal invocation only slightly slower than x86
(at same clock freq), despite larger state!

Miscellany: FPSWA Handling

e How to handle floating-point sw assist faults?

—since architecture logically provides full IEEE fp
arithmetic, FPSWA handler is provided by Intel in
the form of an EFI driver:

— provided as a binary-only module

— normally in firmware, but can be loaded at boot-time

— extensively tested for correctness
— Intel will treat bugs in FPSWA like CPU “erratas”

— boot-loader detects presence of FPSWA driver and
passes callback entry point to kernel

— on FPSWA fault, kernel invokes callback in virtual mode
— anyone free to implement their own FPSWA handler

Miscellany: ACPI Parsing

e Problem:

—unlike any other platform so far, |A-64 requires
AML parsing to boot the system (e.g., to get
Interrupt routine info)

— complex
— would add a lot of kernel bloat

e Solution:

— put AML parser in boot-loader and pass
necessary info directly to kernel

—all other AML parsing done at user-level

L essons

e predicates really neat:

—single store/load preserves 64 control-flow
bits; saving this word also saves preserved
predicates: great for optimizing code with
complex control-flow, such as OS kernel

e stacked registers automatically adjust
context switch cost:

— programs with large register working set:
— higher cswtch time, but benefit from more registers

— programs with small register working set:
— nNo penalty for unused registers

L essons

e lazy fph management great for context
switch performance

— Corollary: DON'T touch £32-f127 frivolously!

e address space regions useful for:

—Implementing different sharing policies
— globally shared vs. process-private

—decoupling implemented virtual address space
from address space layout

JA-32 Support Goals

e Provide a 64-bit OS that also supports 32-bit
processes

e Not an OS for 32-bit processes that also
supports 64-bit processes

Linux IA-64 Is a true 64-bit OS!

JA-32 Support Capabilities

e User-level instructions
— Application processes only (no drivers)
— No Mixing of IA-64 and IA-32 instructions

e Kernel Services (handled by IA-64 Linux

Kernel)
— Page faults
— Device interrupts
— Device drivers

JA-32 Support Status

e |A-32 processes

e Dynamic libraries
—No change to RTLD (Run-Time Loader)

e System calls

— Some data structures are different
— 32-bit longs vs. 64-bit longs

JA-32 Support Status

e System Calls (cont.)
— Transparently translated by the IA-64 Linux
Kernel

— Shim code in the kernel does the translations
— Only needed for certain system calls (exec, getdents,

gettimeofday, Ioctl, etc.)

— Most calls require no changes since they only pass
Integers

— Different page size
— 16KB vs. 4KB
— Mainly affects the ‘mmap’ system call

JA-32 Support Status

e mmap calls
— Good calls

—Just pass on to IA64 syscall handler
— mmap(0, 0x6000, PROT_READ, MAP_PRIVATE, 4, 0)
— mmap(0x4000, 0x6000, PROT_READ, MAP_PRIVATE, 4, 0)

JA-32 Support Status

e mmap calls (cont.)
— Bad calls
— Allocate and copy when needed
— Less efficient than paging but it works

— mmap(0x1000, 0x4000, PROT_READ, MAP_PRIVATE, 4, 0)
— mmap(0x1000, 0x4000, PROT_READ, MAPP_SHARED, 4, 0)

JA-32 bad mmap call

mmap(0x6000, 0x8000, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0)

0x4000 0x8000 (0)(e{0]0]0] 0x10000 0x14000

0x6000 0xd000

[] Unmodified data
[mmaped data

[] Saved data

JA-32 Support Status

e System calls (cont)

—1/O Control (ioctl)

— Not as bad as it seems

— All calls have a unique identifier
— loctl(0, KDGETMODE, &)

— Shim code can translate each call
— Only fails for private drivers
— Solution Is to add new shim code

JA-32 Support

e How can the open source community
contribute?

— Run your favorite IA-32 application
— Report and/or fix any failures

— Re-compile IA-32 applications for |1A-64

— Report and/or fix any failures

Summary
e The Trillian Project provided a solid start to
the port of IA-64 Linux

e |A-64 Linux takes advantage of the new
features of the IA-64 architecture

e |IA-32 binaries run on IA-64 Linux

e Download the |IA-64 Linux source code
today!

— Available at www.kernel.org

